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Abstract

Ora is a strongly typed, region-aware, refinement-based smart contract language targeting
the Ethereum Virtual Machine (EVM). Its core type system combines region types, refinement
types, mutability with invariant-preserving assignments, an effect system for storage writes, and a
transaction-scoped locking discipline to prevent multi-write reentrancy patterns.

This document specifies the core calculus and type system of Ora, focusing on the foundations
that must be preserved across all lowerings to intermediate representations (IR) and ultimately to
EVM bytecode.

1 Introduction

Smart contracts deployed to the EVM are notoriously difficult to reason about. Existing languages such
as Solidity and Vyper provide only coarse-grained type systems, weak guarantees about reentrancy, and
largely ad-hoc treatment of memory regions and persistent state. Correctness arguments are typically
pushed into informal reasoning, off-chain tooling, or manual audits.

Ora is designed to address these shortcomings by:

e Making regions first-class in the type system, so that the language explicitly distinguishes between
persistent storage, transient transaction-scoped state, memory, and calldata.

e Using refinement types to express and enforce invariants on values and storage, with proofs
supported by SMT solvers.

e Supporting mutable refinement types through a hybrid static-dynamic model: invariants are
discharged statically when possible; when proof is not possible or not economical, the compiler
inserts explicit runtime checks.

e Providing an explicit effect system and locking model that expose and constrain stateful opera-
tions, especially writes to storage.

The goal is to provide a core language in which safety properties, such as the absence of certain
reentrancy patterns, the preservation of global invariants, and the disciplined use of regions, can be
stated and mechanically enforced. High-level syntactic sugar and library constructs are intended to
desugar to this core while preserving its guarantees.

This specification presents the core calculus and the Ora type system. It is not a full language man-
ual: many surface-language conveniences are omitted when they do not affect the semantic guarantees.
Instead, the focus is on the core typing judgments, operational semantics, and refinement obligations
that must hold for all well-typed Ora programs.

2 Design Goals

The Ora type system is designed around the following goals:
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1. Safety by construction. Storage invariants should be guaranteed primarily at compile time
through the type system, refinement types, and comptime evaluation. Reentrancy and multi-
write races are intended to be statically ruled out for all well-typed programs within the safe
core of the language (i.e., code that does not bypass the type system via raw EVM escapes).

2. Comptime-first verification (Zig-inspired). Ora follows a Zig-style comptime philosophy:
as much reasoning as possible happens at compile time using the same language and syntax as
runtime code. Invariants, pre- and postconditions, and many calculations are intended to be
validated or executed at compile time, with runtime checks treated as a fallback when proof is
not possible or not economical. The type system, refinements, effect analysis, and comptime
execution are integrated so that rich static reasoning does not require a separate meta-language.

3. Decidability and SMT-friendliness. Refinements are restricted to decidable quantifier-free
logical fragments suitable for automated SMT solving. Type checking and refinement checking
must remain decidable and fast enough for practical compilation, even when combined with
comptime execution and SMT queries. The design explicitly avoids language features that would
force unbounded search or higher-order reasoning in the refinement logic.

4. Zero-runtime overhead whenever possible. When refinement obligations and invariants can
be proven using the type system, SMT, and comptime evaluation, they incur no runtime overhead.
Runtime assertions are generated only when static proof is not possible or not economical, and
are treated as explicit, visible costs in the program surface language or its desugaring.

5. Region separation and explicit side effects. Region types ensure that movement and alias-
ing between storage, memory, transient, and calldata are explicit and statically checked. An
effect system makes all storage writes (and other observable side effects) visible and analyzable,
enabling comptime inspection of stateful behavior and compatibility with global invariants.

6. Direct alignment with EVM bytecode semantics. Regions and the storage model are
designed to map directly to EVM execution primitives (SLOAD, SSTORE, MLOAD, MSTORE, TLOAD,
TSTORE, CALLDATALOAD, etc.). Core Ora terms are lowered to an intermediate representation
(SIR) and then to EVM bytecode in a way that preserves the guarantees of the type, region, and
effect systems (type soundness and preservation of verified invariants). Formalizing SIR and the
full lowering pipeline is left for future work.[Open question: A future revision should introduce
SIR and state a type-preserving translation from Ora into SIR.]

3 Informal Overview

[Open question: Decide later whether this section stays in the full spec only or also in a condensed
overview version.|

Before presenting the formal syntax and rules, we briefly outline the key concepts and how they fit
together.

Types and regions. Every runtime value has a value type (e.g., u256, bool) and a region (e.g.,
@memory, @storage). A located type is written

T@p,

where 7 is a value type and p € {memory, transient, storage, calldata} is its region.

Refinements. A refinement type {z : 7 | ¢} describes values of type 7 that satisfy predicate ¢,
where ¢ is a decidable logical predicate. For example, {b: u256 | b > 0} is the type of strictly positive
integers.

Mutability. Variables are bound as let (immutable) or var (mutable). Immutable bindings behave
like traditional let bindings; mutable bindings can be reassigned with assignments of the form z :=e.



Mutable refinements. A mutable variable can have a refinement type, e.g.:
var bal: { b: u256 | b <= maxSupply } Gmemory;

On every assignment to bal, the predicate b < maxSupply must be preserved. When this cannot be
proved statically, the compiler inserts a runtime assert to guard the assignment. In v0.1, refinement
predicates for mutable bindings are restricted to mention only the bound variable and comptime
constants (such as contract-level constants); they cannot depend on other mutable program state.
This keeps invariant checking local to each binding.

Effects. Typing judgments carry an effect annotation e describing which storage slots may be written.
In the core system:
€ := Pure | Writes(S),

where S is a finite set of storage slots. Pure means “no storage writes”.

Locks (transaction-scoped write discipline). A lockset A tracks which storage-backed vari-
ables are currently write-locked in the ongoing transaction. In the surface language, annotations like
@lock(x) and @unlock(x) mark regions where a variable x must not be written again. These anno-
tations desugar to core operations that add or remove the corresponding storage slot(s) from A.

Formally, once a slot s associated with x is in A, the safe core forbids any further writes to s
until it is explicitly removed from A (via @unlock(x)) or the transaction finishes. This is not a
concurrency primitive: it does not coordinate between threads, but instead enforces a single-write-
after-lock discipline for selected variables within a transaction, which is used to rule out multi-write
reentrancy patterns on those variables.

Typing environments and judgments. The main typing judgment has the form
Y;T5AbFe:ole
where:
e Y is the storage layout (declaring slots and their located types),

e I is the typing context (variables, mutability, and logical assumptions),

A is the current lockset,

e c is the expression being typed,

o is its located type, and

€ is its effect.

SMT and comptime integration. When type checking encounters a refinement obligation (for
example, before a store or a refined assignment), the compiler:

e extracts the logical assumptions from T,
e optionally simplifies expressions via comptime evaluation, and
e asks an SMT solver to prove the predicate.

If the obligation cannot be proved and the context permits, the compiler emits an explicit runtime
assert that enforces the refinement at execution time.

4 Syntax

We define the abstract syntax of regions, types, predicates, expressions, and environments. This is the
core calculus that the surface Ora language desugars into.



4.1 Regions
p ::= memory | transient | storage | calldata
e memory standard EVM memory, local to the current call.
e transient transaction-scoped, cleared at the end of the transaction (backed by TSTORE/TLOAD).

e storage persistent contract storage (backed by SSTORE/SLOAD).

calldata  immutable call input (backed by CALLDATALOAD).

4.2 Base Types
B ::=u256 | bool | address | bytes32 | ---

B ranges over primitive value types. The ellipsis stands for other fixed-size EVM friendly base
types (e.g., unsigned integers of other widths).
4.3 Value Types
Tu=0{z:7|p}|ToT]|
o {z:7 |} is the set of values of type 7 that satisfy predicate (.

e Function types 71 — 7o describe value-level functions in the core calculus. In v0.1, effects are
tracked by the typing judgment rather than in the arrow type itself. An extension with explicit
effectful arrows 7 — 7 is left as open design space.

The dots indicate future extensions (e.g., tuples and structs) that are omitted from the minimal
v0.1 core.

4.4 Located Types
A located type packages a value type with a region:
o n=71Qp
Examples:
e u256 @memory a 256-bit unsigned integer in memory.

e {b:u256 | b < maxSupply}@storage a refined integer value located in storage.

4.5 Mutability
p = imm | mut
e imm immutable binding (let).
e mut mutable binding (var).

Mutability is a property of a binding in the typing context, not of the type itself.

4.6 Effects

The core effect algebra is:
€ := Pure | Writes(.5)

where:
e Pure no storage writes.
o Writes(S) may write to a finite set of storage slots S.

We leave the exact representation of sets of slots abstract; in later sections, S is derived from the
storage layout 3.



4.7 Predicates

Refinement predicates ¢ are drawn from a decidable, quantifier-free logic over base types. We write
the grammar at a high level:

@ == true|false|a|—-p|oAp|pVe
a == e, ©ep| Plepr,---,epm)
o = A<l

e P ranges over a fixed set of uninterpreted predicate symbols, which can be used to abstract
complex properties while remaining SMT-friendly.

e The expressions e, are pure expressions, defined below.

4.7.1 Pure Expressions for Predicates

We write e, for pure expressions that may appear inside predicates:

ep u= n|z|true|false|e,+e,|e,—ep|e,*ep]|---

These expressions are side-effect free: they do not contain load, store, function application, or
any other effectful constructs. Boolean connectives such as A, V, and — appear only at the level of
predicates ¢, not inside e,,.

The exact logical fragment (e.g., QF-LIA with uninterpreted functions) is fixed at the implemen-
tation level and chosen to keep refinement checking decidable.

Refinement logic / SMT reading. For me: decide a precise SMT-LIB logic for Ora’s refine-
ments and write it down in the SMT Integration section.

References:

e Heule, CMU 15-311 SMT slides: overview of SMT, models, and theories.
e SMT-LIB logics catalogue: official list of logics and their features.

e Barrett, Tinelli et al. on SMT-LIB and SMT (optional background for formalizing Ora’s
logical fragment).
e Z3 (or CVC5) user guides for concrete encodings of QF LIA + UF.

Action items:

o Pick a default SMT-LIB logic (probably some QF LIA + UF).
o FEaplicitly list which operators from e, map to which SMT symbols.

e Clarify how contract-level constants (e.g. mazSupply) appear in the SMT environment.

4.8 Expressions

The core expression syntax is:

e == n|true|false|z|fun (z:0) > elele)|letx=cine|varz=ceine|x:=e]|if ethen e else e | load s | store s
e n ranges over integer literals.
e 1z ranges over term variables.
e s ranges over storage slot identifiers declared in the storage layout (see §4.9.1).
e assert o raises a runtime error if ¢ does not hold at execution time.
e if ey then ey else e3 evaluates e; first; if it is true, the result is es, otherwise es.

e lock s marks the storage slot s as write-locked for the remainder of the transaction or until a
matching unlock s is executed.

e unlock s removes the write-lock on storage slot s (if present).

High-level constructs (e.g., loops, pattern matching, user-defined control operators) are considered
syntactic sugar and are not part of the minimal core calculus in v0.1.
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4.9 Environments

We use three main environments: storage layout, typing context, and lockset.

4.9.1 Storage Layout
Yu=-|Xs:0
e 3 declares each storage slot s and its located type o.
e We assume X maps each s to at most one o.
e The set of storage slot identifiers s is disjoint from the set of term variables x. Surface-language
constructs such as mappings (e.g., balance0f [user]) are compiled to concrete slots in 3.
4.9.2 Typing Context
Fiu=-|T,z:(o,p) | T, e
e Bindings of the form z : (o, u) track both the located type and mutability of x.
e Bindings of the form ¢ record logical assumptions available to refinement checking (e.g., from
prior asserts or control-flow conditions).
4.9.3 Lockset
A=@|AU{s}
e The lockset A is a finite set of storage slots that are currently write-locked in the ongoing trans-
action.

e In the operational semantics (and, optionally, in typing), each lock s extends A with s, and each
unlock s removes s from A (if present).

e The safe core enforces that no store to a slot s is allowed while s € A. Equivalently: once a
programmer calls @Lock(x) (locking the slot(s) for x), the code cannot perform further writes
to x until a corresponding @unlock(x) or the end of the transaction.

This syntax forms the backbone of the core calculus. The next sections define typing judgments,
effects, and operational semantics over these syntactic categories.

5 Typing Judgments and Effects

5.1 Typing Judgments

Typing judgment. Introduce the main typing judgment X;T; A e : o | €, where € is an over-
approximation of the storage slots that e may write. Then define well-formedness conditions for
types, environments, and storage layouts.

5.2 Basic Typing Rules

Basic rules. Add rules for literals, variables, let/var, functions, application, and conditionals.
Make sure effects are threaded properly (e.g., application should combine the effect of the function
value and the argument) and that all rules are consistent with the syntax in Section 4.

5.3 Typing with Effects

Effect discipline.  Specify how effects combine (e.g., sequencing, application), and how Pure
vs Writes(S) is handled. For example, a sequential composition e1;es will typically have effect
Writes(S1 U S2) if e; has effect Writes(S;), and Pure acts as the identity element for composition.
Clarify whether function types remain 71 — T2 or eventually become 11 = 2.



5.4 Assignments and Mutable Refinements

Mutable refinements. Add explicit rules for assignments x := e when x has a refinement type.
For a mutable binding © : ({v : 7 | ¢}Q@p, mut) and assignment x := e, the typing rule should
generate a refinement obligation that the new value satisfies ¢ (with v substituted by the result
of e), discharged either statically by the SMT solver or dynamically via an inserted assert, as
described in Section 7.

6 Operational Semantics

6.1 Evaluation Configuration

Configurations. Define the runtime configuration (global storage state, memory, transient state,
lockset A, current expression). Decide how much of ¥ is needed at runtime vs compile time only.

6.2 Small-Step Semantics

Reduction rules. Add small-step rules for the core constructs: if, let/var, function applica-
tion, load, store, lock, unlock, and assert.

The rules for lock and unlock should update the lockset A. The rule for store s e should require
that s € A; if s € A, executing store s e yields a runtime error (or is rejected statically in the safe
core).

6.3 Runtime Errors and Lock Violations

Error states. Specify the error states (failed assert, writes to locked slots, type-stuck configu-
rations, etc.) and how they relate to the progress/preservation theorems later.

7 Refinements and SMT Integration

7.1 Logical Environment Extraction

Logical I'. Define how to extract the “logical context” from I': which bindings become logical
variables, which assumptions ¢ are fed directly to the SMT solver, and how e, expressions are
interpreted. Clarify how contract-level constants and comptime-known values are represented in
the logical environment.

7.2 Choice of SMT-LIB Logic

[Note: Use Heule’s SMT slides and the SMT-LIB logics catalogue to choose a concrete SMT-LIB logic
(e.g. some QF LIA + UF variant).]

SMT-LIB target. State the chosen SMT-LIB logic (e.g. QF _LIA + UF) and briefly justify
the choice (decidability, support in Z3/CVC5, expressiveness for Ora’s needs). List any operators
from ey that are not supported and must be disallowed or desugared.

7.3 Encoding Refinement Obligations

Obligation — SMT. Explain how each refinement obligation (e.g. before a store or a refined
assignment) is translated to an SMT query:

e FEzxtract assumptions from T.
o Map e, to SMT terms.

e Ask the solver to prove validity or satisfiability of the relevant formula.

Clarify which side of the judgment (implication direction) you use and whether you check unsatis-
fiability of the negation or validity of the implication directly.



7.4 Static vs Dynamic Enforcement

Static/dynamic split. Describe the hybrid model: if the SMT solver can prove the obligation,
no runtime cost; otherwise, generate a runtime assert and treat it as part of the program’s explicit
behavior. Connect this back to the design goals in Section 2 (zero-overhead when possible).

7.5 Soundness Assumptions
Meta-level assumptions. List meta-assumptions:

e The SMT solver is sound for the chosen logic.
e The encoding from Ora’s fragment to SMT-LIB is faithful.

o Comptime evaluation used in simplification is semantics-preserving.

These will be referenced later in any formal soundness statement.

8 Locking Discipline and Reentrancy

Ora provides an explicit, transaction-scoped write-locking mechanism for storage locations. At the
surface level, programmers use annotations such as @lock(x) and @unlock(x) to mark regions where
a storage-backed variable x must not be written again. These annotations desugar to core expressions
lock s and unlock s, where s is the storage slot (or set of slots) associated with x in the storage layout
3.

Only slots that are explicitly locked participate in this discipline; other slots can be written freely
and do not enjoy the same guarantees.

Each EVM transaction is associated with a transaction-scoped lockset Ai. All Ora call frames
(including reentrant calls) within the same transaction share the same Agy:

e Executing lock s adds s to Ay; attempting to lock s again while s € Ay, is an error.

e Executing unlock s removes s from Ay, (if present).

e Executing store s e is only permitted when s ¢ Ay ; otherwise it is an error.

The intended usage pattern is:

1. Perform any necessary writes to x.

2. Call @lock(x) to freeze further writes to x for the rest of the transaction (or until @unlock(x)).

3. Optionally perform external calls; any reentrant Ora code will see s in Ay, and will be unable to
perform further store operations to x.

This discipline enforces a single-write-after-lock policy for selected variables within a transaction,
which is sufficient to rule out a large class of multi-write reentrancy patterns on those variables,
provided that locks are placed after the final intended update.

[Open question: Decide later whether certain slots are declared as “must-be-locked-before-write”
in ¥, and enforce this in the typing rules.]

Locking structure. Future revisions can:

o Add illustrative examples showing how @lock(z) / @unlock(z) prevent multi-write reentrancy
patterns on balances or other critical variables.
o Clarify at the typing level which stores are required to be protected by locks (e.g., for slots

marked as “lock-protected” in the storage layout) and which slots are intentionally left un-
locked.

9 Lowering to SIR and EVM

Preservation of guarantees. Describe, at a high level, how typed Ora programs are lowered
to SIR and then to EVM bytecode while preserving the type, region, and effect guarantees. A full
formalization of SIR and the lowering pipeline is future work and is not needed in v0.1.
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